Die aktuelle Wahlvorhersage vom 2. Mai 2017: Für die kommende Bundestagswahl am 24. September 2017 liefert unser Modell basierend auf Daten, die Stand 2. Mai 2017 verfügbar sind, folgende Vorhersage (mit 90%-Kredibilitätsintervallen in Klammern): CDU/CSU 37,1% [28,8%; 45,9%], SPD 27,5% [20,2%; 36,0%], Die Linke 8,5% [5,8%; 12,2%], Bündnis 90/Die Grünen 7,3% [4,7%; 10,4%], FDP 6,1% [3,9%; 8,8%] und AfD 9,3% [6,1%; 13,3%].
Wir sind ein Team von Wahlforschern der Universitäten Mannheim, Zürich und der HU Berlin. Unser Modell verknüpft historische Informationen zu Bundestagswahlen mit aktuellen Umfragedaten. Zweitstimme.org wird die Kampagne zur Bundestagswahl 2017 durch wissenschaftlich fundierte Prognosen begleiten. Wenn Sie uns Rückmeldung zu unserer Prognose geben möchten, nutzen Sie bitte unser Kontaktformular oder schreiben Sie an feedback@zweitstimme.org.
Die strukturelle Komponente unseres Modells greift auf Faktoren zurück, die sich bereits in der Vergangenheit (seit 1949) als relevant für die Vorhersage von Wahlergebnissen erwiesen haben. Dazu gehören etwa das Abschneiden von Parteien bei vergangenen Wahlen, historische Umfragedaten und die Information darüber, ob eine Partei den Kanzler oder die Kanzlerin stellte. In anderen Worten lernt die strukturelle Komponente aus den Regelmäßigkeiten aller vergangenen Bundestagswahlen. Das frühzeitige Vorhandensein dieser Informationen (bereits 200 Tage vor der Wahl) erlaubt uns so eine frühe Vorhersage des Wahlausgangs.
Die strukturelle Komponente alleine ist jedoch oft nicht ausreichend, um kurzfristige Neujustierungen im Parteiensystem oder Schwankungen in der politischen Stimmung abzubilden. Wir benutzen deshalb veröffentlichte Werte der sogenannten Sonntagsfrage, um der Dynamik einer Wahl Rechnung zu tragen. Vereinfacht gesagt mischen wir dabei für die eigentliche Prognose die Informationen über die Regelmäßigkeiten der vergangenen Wahlen mit dem was wir gerade in den Umfragen beobachten können. Während die strukturelle Kompenente des Modells stabil bleibt, aktualisieren wir unsere Vorhersage mit jeder neu veröffentlichten Umfrage.
Unser Modell wird über einen sogenannten MCMC-Algorithmus geschätzt. Dabei wird - bildlich gesprochen - der Wahlausgang viele Male simuliert; in unserem Fall 100.000 mal. Aus diesen Simulationen lassen sich dann Wahrscheinlichkeiten für alle Ereignisse berechnen, die unmittelbar mit den vorhergesagten Parteianteilen in Verbindung stehen. Liegt beispielsweise in etwa 80.000 der Simulationen die CDU/CSU vor der SPD, entspricht dies einer geschätzten Wahrscheinlichkeit von 80%, dass die CDU/CSU bei der Wahl tatsächlich besser als die SPD abschneidet.
Unser Modell kombiniert die Erkenntnisse über den Einfluss bestimmter Faktoren auf vergangene Wahlen mit aktuellen Umfragedaten, welche die aktuelle politische Stimmung abbilden. Unser Modell wird immer dann aktualisierte Vorhersagen für den Wahlausgang der kommenden Bundestagswahl liefern, wenn neue Umfrageergebnisse zur „Sonntagsfrage“ veröffentlicht werden. Dies hat folgende Vorteile: Liegt der Wahlzeitpunkt noch weit in der Zukunft, ist die allein auf Umfragen basierende Vorhersage sehr unsicher, da diese über Zeit sehr unbeständig sind. Dementsprechend wird zunächst der Vorhersage des strukturellen Modells mehr Gewicht beigemessen. Rückt der Wahltag näher, steigt das Vertrauen des Modells in die umfragebasierte Vorhersage, da diese präziser wird.
Aktuelle Umfragen stellen einen wichtigen Teil unserer Datengrundlage dar. Außerdem gilt: Je näher der Wahltag rückt, desto mehr Gewicht haben veröffentlichte Umfragen für unsere Vorhersagen. Allerdings hat sich bei vergangenen Bundestagswahlen gezeigt, dass Umfragen vor der Wahl manchmal danebenliegen können. Deshalb haben wir zusätzlich ein Modell entwickelt, dass unter anderem historische Zusammenhänge zwischen dem Wahlergebnis einerseits und längerfristigen Parteineigungen sowie über 200 Tage vor der Wahl veröffentlichten Umfragen erfasst und für eine eigene Prognose nutzt. Dieses Modell hilft also bei der Einschätzung, was man "unter normalen Umständen" erwarten würde. Diese Prognose wird dann mit der Information gemischt, die wir aus aktuellen Umfragen gewinnen. Deshalb stellt unsere eigentliche Prognose meist einen Kompromiss dar zwischen dem, was man auf Basis der historischen Daten erwarten würde, und dem, was man aktuell in den Umfragen beobachtet.
Darüber hinaus gibt es das Phänomen von sogenannten Institutseffekten. Das bedeutet, dass Institute ihre gesammelten Umfragedaten unterschiedlich gewichten und auswerten. Dabei kann es vorkommen, dass eine Partei von einem bestimmten Institut systematisch stärker eingeschätzt wird als von einem anderen Institut. Solche Verzerrungen versuchen wir in unserem Modell ebenfalls zu korrigieren.
Das Bundeswahlgesetz sieht vor, dass Überhangmandate durch Ausgleichsmandate ausgeglichen werden. Somit soll gewährleistet werden, dass Parteien im Bundestag den Anteil der Sitze zugesprochen wird, der ihrem Zweitstimmenanteil (unter allen im Parlament vertretenen Parteien) entspricht. Die Vorhersage der Stimmanteile ist also im Wesentlichen äquivalent zur Vorhersage der Sitzanteile.
Grundsätzlich ist es richtig, dass Umfragen mit einer gewissen Unsicherheit behaftet sind. Das hat sowohl statistiche Gründe (es wird eben nur ein mehr oder weniger zufällig ausgewählter kleiner Teil der Bevölkerung befragt) als auch Ursachen, die in den Designentscheidungen der Umfrageinstitute zu finden sind. Das hat in diesem Jahr auch die ersten nationalen Medien dazu bewogen, Ihre Praxis zur Berichterstattung über Umfragen anzupassen. Die sogenannte Fehlertoleranz in Umfragen ist allerdings nur eine von vielen Quellen von Unsicherheit in unserer Vorhersage. Wir möchten mit unserem Modell nicht die hypothetische Frage beantworten, die in der Sonntagsfrage gestellt wird (""Wenn am nächsten Sonntag Bundestagswahl wäre..."). Stattdessen geht es darum, den tatsächlichen Wahlausgang vorherzusagen. Dafür gibt es kein Patentrezept. Unsere Unsicherheit ergibt sich letztlich daraus, wie zuverlässig das Modell die Ausgänge vergangener Wahlen vorhersagt. Da Umfragen bisweilen deutlich mehr danebenliegen als die suggerierten +/-3 Prozentpunkte, wäre es überraschend, wenn unsere Vorhersage, die auch noch Differenzen zwischen Umfragen und tatsächlichen Wahlergebnissen berücksichtigen muss, ebenso genau oder sogar noch genauer wäre.